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O 1 Previous Work

« Citrus/Kiwi Disease Classification Service System

- Efficient Data Augmentation Method for Crop Disease
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Citrus/Kiwi Disease Classification Service System
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Dataset (1/3)
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Dataset (2/3)
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Dataset (3/3)

1. Kiwi / Gitrus : Al Hub, = 2 R0 SIS - Dataset : Training : Test = 7: 3 / Training : Validation : Test = 7 : 2: 1

Kiwi disease dataset Citrus disease dataset
Disease Type Total Disease Type Total
1 Kiwi fruit healthy 2,124 1 Citrus fruit healthy 2,545
2 Kiwi fruit bacterial soft rot 1,737 2 Citrus fruit CBC 1,716
3 Kiwi leaf healthy 2,876 3 Citrus leaf healthy 2,455
4 Kiwi leaf thysanoptera 5,585 4 Citrus leaf CBC 9,552
5 Kiwi leaf spot 7,678 5 Citrus leaf panonychus. citir 1,814
Total 20,000 6 Citrus leaf toxoptera. citricida 1,918
Total 20,000
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Network Architecture
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Experiment Result

- EY 7|8t t=2F 257 2 Validation 2 Z1f (Stratified K-fold cross-validation / k=5)

Disease Citrus Kiwi
Model F1 score Accuracy F1 score Accuracy
VGGNet16 96.7 97.7 97.1 £ 0.6442 97.7 £ 0.1581
ResNet50 97.6 98.3 96.46 + 0.497 97.56 + 0.2074
DenseNet161 97.7 98.4 97.18 + 0.5263 97.72 + 0.3271
EfficientNet 98.2 98.8 90.46 + 0.7162 91.88 + 0.8556
ViT 98.2 98.8 97.34 + 0.2881 98.18 + 0.1924
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Experiment Result

. Hyd 7|8 N2t E 25 DE Test A A1}

n

Disease Citrus Kiwi
Model F1 score Accuracy F1 score Accuracy
VGGNet16 97 97.9 97.8 £ 0.2074 99.06 + 0.1161
ResNet50 98 98.6 98.6 + 0.1517 98.28 + 0.1215
DenseNet161 98.4 98.8 98.9 + 0.0837 99.39 + 0.0673
EfficientNet 98.6 99 98.7 + 0.1789 99.16 + 0.0811
ViT 97.5 98.1 98.7 + 0.0837 99.17 £ 0.0778
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Conclusion
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Automatic Classification Service System for Citrus Pest
Recognition Based on Deep Learning

Saebom Lee '(*, Gyuho Choi ', Hyun-Cheol Park 2 and Chang Choi ¥*

e [F:39

Department of Computer Engineering, Gachon University, Sujeong-gu,
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Abstract: Plant diseases are a major cause of reduction in agricultural output, which leads to severe

economic losses and unstable food supply. The citrus plant is an economically important fruit crop

grown and produced worldwide. However, citrus plants are easily affected by various factors, such ° Average J I F : Top 32.1 %
as climate change, pests, and diseases, resulting in reduced yield and quality. Advances in computer

vision in recent years have been widely used for plant disease detection and classification, providing

opportunities for early disease detection, and resulting in improvements in agriculture. Particularly,

the early and accurate detection of citrus diseases, which are vulnerable to pests, is very important

to prevent the spread of pests and reduce crop damage. Research on citrus pest disease is ongoing,

but it is difficult to apply research results to cultivation owing to a lack of datasets for research and

limited types of pests. In this study, we built a dataset by self-collecting a total of 20,000 citrus pest . M

images, including fruits and leaves, from actual cultivation sites. The constructed dataset was trained, i Status . Pu bI IShed 2022_1 1 _1 8
verified, and tested using a model that had undergone five transfer learning steps. All models used in

the experiment had an average accuracy of 97% or more and an average f1 score of 96% or more. We

built a web application server using the EfficientNet-b0 model, which exhibited the best performance

check for

Opdates among the five learning models. The built web application tested citrus pest disease using image

Citation: Lee. . Chot, G- Park samples collected from websites other than the self-collected image samples and prepared data, and
Hation: Lee, 5. Lhoi, L) Fark,
H-C.s Choi, C. Automatic both samples correctly classified the disease. The citrus pest automatic diagnosis web system using

Classification Service System for the model proposed in this study plays a useful auxiliary role in recognizing and classifying citrus Y KiWi . ODI _IC_Dralgl- %l‘))‘l | 2 Fou-l _?_ —g—% 1 Z‘I Z |-§ I—;'-I% 01 |%5I
¥ . S

Citrus Pest Recognition Based on diseases. This can, in turn, help improve the overall quality of citrus fruits. o 1
Deep Learning. Sensors 2022, 22, 8911
https:/ /doi.org/ 103390/ 522228911 Keywords: agriculture; citrus disease classification; deep learning; web application

Academic Editor. Yongwha Chung
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- Efficient Data Augmentation Method for Crop Disease
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Efficient Data Augmentation Method for Crop Disease
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Related Work (1) Related Work (2)

1. (2019) Citrus pests and diseases 2. (2022) Citrus disease detection and
recognition model using weakly dense classification using end-to-end
connected convolution network anchor-based deep learning model

- Random rotation, reflection, shift, and flip > D E O|O|X|E grayscale= H 2

Black spot
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Huanglongbing

1) Xing, Shuli, Marely Lee, and Keun-kwang Lee. "Citrus pests and diseases recognition model using weakly dense connected convolution network." Sensors 19.14 (2019): 3195.
2) Syed-Ab-Rahman, Sharifah Farhana, Mohammad Hesam Hesamian, and Mukesh Prasad. "Citrus disease detection and classification using end-to-end anchor-based deep learning model." Applied Intelligence 52.1 (2022)
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1. Kiwi / Gitrus : Al Hub, =Z! I0| E Xt}

Kiwi disease dataset

=

Citrus disease dataset

Disease Type Total

1 Kiwi fruit healthy 2,124
2 Kiwi fruit bacterial soft rot 1,737
3 Kiwi leaf healthy 2,876
4 Kiwi leaf thysanoptera 5,585
5 Kiwi leaf spot 7,678
Total 20,000

Disease Type Total
Citrus fruit healthy 2,545
Citrus fruit CBC 1,716

Citrus leaf healthy 2,455
Citrus leaf CBC 9,552

Citrus leaf panonychus. citir 1,814
Citrus leaf toxoptera. citricida 1,918
Total 20,000
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2. Pepper bell / Potato / Tomato : PlantVillage

PlantVillage dataset

Disease Type Total
1 Pepper bell leaf bacteria spot 997
2 Pepper bell leaf healthy 1,478
3 Potato leaf early blight 1,000
4 Potato leaf late blight 1,000
5 Potato leaf healthy 152
6 Tomato leaf target spot 1,404
7 Tomato leaf early blight 1,000
8 Tomato leaf late blight 1,909

Disease Type Total

9 Tomato leaf mold 952
10 Tomato leaf Septoria spot 1,771
11 Tomato leaf spider mites 1,676

12 Tomato leaf mosaic virus 373
13 Tomato leaf yellow virus 3,209
14 Tomato leaf healthy 1,591
15 Tomato leaf bacteria spot 2,127
Total 20,639
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Imbalanced Data Problem

Dataset : Training : Test = 7: 3 (Stratified K-fold cross-validation / k=5)

Kiwi disease dataset used in the experiment Citrus disease dataset used in the experiment
Disease Type Training Test Total Disease Type Training Test Total
1 Kiwi fruit healthy 1,698 426 2,124 1 Citrus fruit healthy 2,035 510 2,545
2 | Kiwi fruit bacterial soft rot 1,389 348 1,737 2 Citrus fruit CBC 1,372 344 1,716
3 Kiwi leaf healthy 2,300 576 2,876 3 Citrus leaf healthy 1,965 490 2,455
4 Kiwi leaf thysanoptera 4,467 1,118 5,585 4 Citrus leaf CBC 7,642 1,910 9,552
5 Kiwi leaf thysanoptera 6,142 1,536 5,585 5 | Citrus leaf panonychus. citir 1,452 362 1,814
6 | Citrus leaf toxoptera. citricida 1,534 384 1,918
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Imbalanced Data Problem

Dataset : Training dataset : Test dataset = 7: 3

PlantVillage dataset in the experiment

Class : 24 / Total images : 60,165

Disease Type Training Test Total Disease Type Training Test Total
1 | Pepper bell bacteria spot | 779 = 800 200 1,000 9 Tomato leaf mold 752 - 800 200 1,000
2 Pepper bell healthy 1,182 296 1,478 10 | Tomato Septoria spot 1,432 339 1,771
3 Potato early blight 800 200 1,000 11 | Tomato leaf spider mites 1,319 357 1,676
4 Potato late blight 800 200 1,000 12 | Tomato leaf mosaic virus X
5 Potato healthy X 13 | Tomato leaf yellow virus 2,578 631 3,209
6 Tomato target spot 1,095 309 1,404 14 Tomato leaf healthy 1,269 322 1,591
7 Tomato early blight 800 200 1,000 15 Tomato bacteria spot 1,687 440 2,127
8 Tomato late blight 1,555 354 1,909 Total 20,615
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Noise Types

 Noise type : Impulse , Poisson , Gaussian , Uniform , Laplacian , Multiplicative Gaussian

(a) Original

(d) Uniform (e) Laplacian (f) Multiplicative Gaussian —
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Image with added noise

* Image with multiplicative Gaussian noise

(@) Pepper bell bactenal spot

(b) Tomato leaf mold
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Data Augmentation Types

Image Data
Augmentation

Basic Image Deep Learning

Manipulations Approaches

Geometric Color Space
Transformations Transformations Adversarial GAN Data
Il Training Augmentation
Kernel Filters Neurz;i Style
Transfer
/ N\
Random

Erasing Mixing Images
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Sample image of crop disease (1)

(a) Kiwi fruit bacterial soft rot (b) Kiwi fruit normal

(e) Pepper bell healthy (f) Potato early blight

(c) Kiwi leaf spot

(g) Potato late blight

(h) Tomato target spot
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Data augmentation methods applicable for experiments (1)
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(9) Perspective (h) Erasing (i) Grayscale (j) Gaussian blur (I) Invert
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Sample image of crop disease (2)

(a) Kiwi fruit bacterial soft rot (b) Kiwi fruit normal (c) Kiwi leaf spot (d) Pepper bell bacterial spot

(e) Pepper bell healthy (f) Potato early blight (g) Potato late blight (h) Tomato target spot
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Data augmentation methods applicable for experiments (1)

(g) Perspective (h) Erasing (i) Grayscale () Gaussian blur (k) Color jitter () Invert
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Color Jitter
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Network Architecture

The overall workflow of the

proposed network architecture

[

il

(a) Without color distortion.

h

{b) With color distortion.

h

VGG ResNet DenseNet EfficientNet VIiT DeiT
best model best model best model best model best model best model

Model Test and Visualization feature maps from the five bests models

Stratified 5 cross-validation

Crop Disease
Dataset Classes
! Horizontal flip Vertical flip
VGGNet EfficientNet
Citrus (a) i
Rotation Resize and crop
Kiwi
ResNet ViT
Tomato 3 .
Color jitter Gaussian blur
Potato — (b)
Rotation Resize and crop DenseNet DeiT
Pepper bell

Data augmentation method

IMAGENET Transfer learning 28
Dataset [N cass1 ~ class2 .. “ class 1000
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Sample image combined with data augmentation methods

color jitter + vertical flip + rotation + resize and crop 29
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Experiment Result

- HHd 7|8 & E 25 22 Validation 2@ A1} (Stratified K-fold cross-validation / k=5)

Method (a) (b)

Model F1 score Accuracy Training time F1 score Accuracy Training time
VGGNet16 95.8 + 1.3024 | 97.47 + 0.0841 29 :56: 06 97.8 + 0.2074 | 99.06 + 0.1161 52 :36:54
ResNet50 96.2 + 0.3536 | 97.71 + 0.0727 23 :05:57 98.6 £ 0.1517 | 98.28 + 0.1215 57 : 14 : 01

DenseNet161 | 97.5 + 0.2121 | 98.14 + 0.0857 50 : 28 : 07 98.9 + 0.0837 | 99.39 + 0.0673 59 :11:22
EfficientNet 97.0 + 0.2345 | 974 + 0.1389 22 : 02 : 21 98.7 + 0.1789 | 99.16 + 0.0811 57 : 03 : 28
ViT 97.6 + 0.1095 | 98.16 + 0.0661 63 : 08: 50 98.7 + 0.0837 | 99.17 + 0.0778 64 : 21: 39
DeiT 95.5 + 0.0234 | 95.35 £ 0.0287 75 :38:36 95.9 + 0.024 95.64 + 0.029 75 :47 : 28
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Experiment Result

- BV SME 2 F 22 Test 2 A1t

Model F1 score | Accuracy Recall Precision
Test result of the crop disease classification 957 97 3 96.59 95 86
100 VGGNet16 : : : :
98 97.9 98.06 97.87
96 96.9 96.9 96.07
95 ResNet50
98.4 98.3 98.4 98.46
90 97 98 97.85 97.16
DenseNet161
98.9 98.8 97.85 97.16
8> o 95.8 96.9 95.7 96.96
EfficientNet
98.9 98.7 98.8 98.92
80
ViT 97.4 98.2 97.42 98.45
|
7c 99.1 98.9 98.96 99.13
(a) (b) _ 97.6 98.37 97.61 98.52
B VGGNet M ResNet M DenseNet M EfficientNet M VIT M DeiT Deit 98.4 98.19 98.31 98.38
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Feature map (VGGNet)
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Feature map (ResNet)




Previous Work/ Effident Data Augmentation Method for Crop Disease Intelligent Information Processing Lab

Feature map (DesnetNet)
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Feature map (EfficientNet)
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Feature map (ViT, DeiT)

min mean max
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Conclusion

Volume 210, July 2023 ISSN 0168-1699

«  Computers and Electronics in Agricutture £ 0§14
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« (ite Score: 136 (Q1)
o R « |F:83

* Average JIF:Top 7.5




O 2 Work In Progress

« Adversarial Attack for ECG user authentication
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Adversarial Attack for ECG user Authentication
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Related Work (1) Related Work (2)

1. (2019) Citrus pests and diseases 2. (2022) Citrus disease detection and
recognition model using weakly dense classification using end-to-end
connected convolution network anchor-based deep learning model

- Random rotation, reflection, shift, and flip > D E O|O|X|E grayscale= H 2

Original Image Binary Image Binary with bb Original with bb

Black spot

Canker

Huanglongbing

3) Xing, Shuli, Marely Lee, and Keun-kwang Lee. "Citrus pests and diseases recognition model using weakly dense connected convolution network." Sensors 19.14 (2019): 3195.
4) Syed-Ab-Rahman, Sharifah Farhana, Mohammad Hesam Hesamian, and Mukesh Prasad. "Citrus disease detection and classification using end-to-end anchor-based deep learning model." Applied Intelligence 52.1 (2022)
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Related Work (1)

Related Work (2)

.
1. (2023) Adversarial examples: attacks and 2. (2020) Deep learning models for
defences on medical deep learning systems electrocardiograms are susceptible to
adversarial attack
« Dataset : MNIST(Medical and Non-Medical)
- CXR:8E xM o|O|X| « Dataset : 2017 PhysioNet/CinC Challenge
- BS : &oH =gt o|O|X| - Training set : Test set = 9 : 1
DR : Gt A OfdiH= « Evasion Attack : FGSM , PGD
. Evasion Attack : FGSM - &A™ ZEE 2017 PhysioNet/CinC Challenge
. AlY D yGGNet 19 ol M 5% 134E convolution network
. 324 43 E (epsilon = 0.0003) - 54 858
- CXR : 51.84%, BS : 48.1%, DR : 47.8% - 50% Ol
N y
42

1) Puttagunta, Murali Krishna, S. Ravi, and C. Nelson Kennedy Babu. "Adversarial examples: attacks and defences on medical deep learning systems." Multimedia Tools and Applications (2023): 1-37.
2) Han, Xintian, et al. "Deep learning models for electrocardiograms are susceptible to adversarial attack." Nature medicine 26.3 (2020): 360-363.
3)  Goodfellow, S.D. et al. Towards understanding ECG rhythm classification using convolutional neural networks and attention mappings. In Proceedings of the 3rd Machine Learning for Healthcare Conference 83—-101 (PMLR, 2018)
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Experiment Result (1/5)

« 1D CNN Layer depth Of| IHE A& H|w A

Number of Layer Accuracy F1 score
Conv 1 96.92% 97.53%
Conv 2 98.44% 98.83%
—| Conv 3 99.25% 99.65%
Conv 4 97.75% 98.91%

Test Dataset Accuracy F1 score

" Conv 3 98.22% 98.21%

Conv 30M 7HE 2 58 == 715X dH

100%
95%
90%
85%
80%
75%
70%
65%
60%
55%
50%

Number of Layer

Conv 1 Conv 2 Conv 3 Conv 4

B Acc B F1 score
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Experiment Result (2/5)

«  Evasion Attack Accuracy SI=HE «  Evasion Attack F1 score 5t&E
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Experiment Result (3/5)

FGSM (Fast Gradient Sign Method) vs PGD (Projected Gradient Descent) ECG Signal
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Accuracy
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Experiment Result (4/5)

« FGSM (Fast Gradient Sign Method) ECG Signal

Accuracy vs Epsilon
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Experiment Result (5/5)

« PGD (Projected Gradient Descent) ECG Signal
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Conclusion
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3 Work In Future

« Generating Kiwi Data through Data Diffusion Model

 Follow-up research : Adversarial Defense for ECG user authentication
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Generating Kiwi Data through Data Diffusion Model

« X : Generating Kiwi Data through Data Diffusion Model

« 5% O|O|E{A2 Open datasetO| O 3|2t

- DN &= Y A A= PlantVillage Dataset= AFHES
AR} Custom Dataset= AR A7t == O|F
o s&=

- Diffusion ModelS £36 O[O|e et A7 EHe

20
18
16
14
12
10

o N B O X

Dataset Distribution From Reviewed Studies

Cornell NLB Al Challenger
Dataset

PlantVillage  Digipathos PlantDoc Custom

Si= AY A0 ==l Dataset (2022)

Ahmad, Aanis, Dharmendra Saraswat, and Aly El Gamal. "A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools.

" Smart Agricultural Technology (2022): 100083

51
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Generating Kiwi Data through Data Diffusion Model

« 2 - Stable Diffusion modelS £3H kiwi datasetS SHAlok= 1= 43510} &t

Generator Model / GAN(Generative Adversarial Networks) : 23442 HGenerative)2f ZTHE K Discriminator) 2712 A1E2=
FHA7 | et&otH, WA 2| GIOIERL FAFet 7} GIOEE ddot=S ot
> M=2 H[0[§Z H{ZFE CH=E0{U= Al

»  Diffusion Model : O|D|X|Lt CO[E{Q] E4= FA[SIHEA 0|22 271/ MIF Afdts =2/ 2HS0] HO[ES Helet
~> 7|Z H[O0[H S 7tsstAL 2ol A== T0|HE dded
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Generating Kiwi Data through Data Diffusion Model

 Diffusion Model
: Input imageO]l NoiseS 0921 CHAOfl 22 271510, At BEE 7RI 0|22 H|{BI2 24, input imaget A
ELE B2 71ZI 0|0|X|& AAGH= 2E!

= O0o°

Forward Diffusion Process

Reverse Denoising Process
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Generating Kiwi Data through Data Diffusion Model

« Diffusion ModelS £5t 52+ H|O|E] &4 S0t 0jR A2

(arXiv 2023) Effective Data Augmentation With Diffusion Models

« Dataset : Pascal, COCO, Leafy Spurge
«  Model : DA-Fusion (Image-to — Image Diffusion ModelOf| A +Qt)

Performance :

= =
ey

=

Gained AUC (Val)

=
o

=
=

Pascal

o

0

Gained AUC (Val)

n

ES

coco

Gained AUC (Val)

Spurge

= DA-Fusion (k=1) = DA-Fusion (k=4)

Normalized Score

Overall

Trabucco, Brandon, et al. "Effective data augmentation with diffusion models."” arXiv preprint arXiv:2302.07944 (2023).
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Generating Kiwi Data through Data Diffusion Model

&2l GAN 7|8t Kiwi Data Generating ¥11& 43 £, 02| 2|0

[ Generator Model |

@ 4712] Convolution layer

@ Input — Dense — Embedding — Leaky RelLU - Conv

[ Discriminator model ]

@ 4702] Convolution layer

@ Input — Embedding — Dense — Leaky ReLU — Conv - Flatten - Dropout

- Diffusion ModelS A3 H|O|E] &A=

Xt 48l (Stable Diffusion Model AR 04 )
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Generating Kiwi Data through Data Diffusion Model

« ofid A11S llot0], 2024 HARE Y i Aol A& e Oy

« 2023 7|E : HH| 200000008 / H7 (2 1~2F

zlE SH= S HOEMS gd= Sl HIOJES ‘ddst, To|H dd 221} H|0E gd 22= Bluws At et

=N e]



3 Work In Future

« Generating Kiwi Data through Data Diffusion Model

 Follow-up research : Adversarial Defense for ECG user authentication
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Adversarial Defense for ECG user authentication
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